RUS
ENG
Full version
JOURNALS
// Problemy Peredachi Informatsii
// Archive
Probl. Peredachi Inf.,
2021
Volume 57,
Issue 2,
Pages
36–43
(Mi ppi2339)
Coding Theory
Coding in a
$\mathrm{Z}$
-channel in case of many errors
V. S. Lebedev
a
,
N. A. Polyanskii
bc
a
Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b
Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
c
Technische Universität München, Munich, Germany
Abstract:
We prove that the maximum number of words in a code that corrects a fraction of
$1/4+\varepsilon$
of asymmetric errors in a
$\mathrm{Z}$
-channel is
$\Theta(\varepsilon^{-3/2})$
as
$\varepsilon\to 0$
.
Keywords:
$\mathrm{Z}$
-channel, minimum distance, constant-weight code.
UDC:
621.391 :
519.724
Received:
14.12.2020
Revised:
25.03.2021
Accepted:
26.03.2021
DOI:
10.31857/S0555292321020029
Fulltext:
PDF file (198 kB)
References
English version:
Problems of Information Transmission, 2021,
57
:2,
129–135
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024