RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2021 Volume 57, Issue 2, Pages 36–43 (Mi ppi2339)

Coding Theory

Coding in a $\mathrm{Z}$-channel in case of many errors

V. S. Lebedeva, N. A. Polyanskiibc

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
c Technische Universität München, Munich, Germany

Abstract: We prove that the maximum number of words in a code that corrects a fraction of $1/4+\varepsilon$ of asymmetric errors in a $\mathrm{Z}$-channel is $\Theta(\varepsilon^{-3/2})$ as $\varepsilon\to 0$.

Keywords: $\mathrm{Z}$-channel, minimum distance, constant-weight code.

UDC: 621.391 : 519.724

Received: 14.12.2020
Revised: 25.03.2021
Accepted: 26.03.2021

DOI: 10.31857/S0555292321020029


 English version:
Problems of Information Transmission, 2021, 57:2, 129–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024