RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2007 Volume 43, Issue 4, Pages 45–50 (Mi ppi26)

This article is cited in 13 papers

Coding Theory

Partitions of an $n$-Cube into Nonequivalent Perfect Codes

S. V. Avgustinovichab, F. I. Solov'evaab, O. Hedenc

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
c Royal Institute of Technology

Abstract: We prove that for all $n=2^k-1$, $k\ge5$, there exists a partition of the set of all binary vectors of length $n$ into pairwise nonequivalent perfect binary codes of length $n$ with distance 3.

UDC: 621.391.15

Received: 09.04.2007
Revised: 13.09.2007


 English version:
Problems of Information Transmission, 2007, 43:4, 310–315

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025