RUS
ENG
Full version
JOURNALS
// Problemy Peredachi Informatsii
// Archive
Probl. Peredachi Inf.,
2007
Volume 43,
Issue 4,
Pages
45–50
(Mi ppi26)
This article is cited in
13
papers
Coding Theory
Partitions of an
$n$
-Cube into Nonequivalent Perfect Codes
S. V. Avgustinovich
ab
,
F. I. Solov'eva
ab
,
O. Heden
c
a
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b
Novosibirsk State University
c
Royal Institute of Technology
Abstract:
We prove that for all
$n=2^k-1$
,
$k\ge5$
, there exists a partition of the set of all binary vectors of length
$n$
into pairwise nonequivalent perfect binary codes of length
$n$
with distance 3.
UDC:
621.391.15
Received:
09.04.2007
Revised:
13.09.2007
Fulltext:
PDF file (716 kB)
References
Cited by
English version:
Problems of Information Transmission, 2007,
43
:4,
310–315
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025