RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1995 Volume 31, Issue 1, Pages 17–27 (Mi ppi262)

Information Theory and Coding Theory

Asymptotics of Fisher Information Under Weak Perturbation

V. V. Prelov, E. C. van der Meulen


Abstract: An asymptotic expression as $\varepsilon\to 0$ is derived for the Fisher information of a random variable $Y=X+Z_\varepsilon$, where $X$ and $Z_\varepsilon$ are mutually independent, under some regularity conditions on the probability density function of $X$ and the assumption that $\mathbf{E}Z^2_\varepsilon=\varepsilon^2$ and $\mathbf{E}|Z_\varepsilon/\varepsilon|^k\leq c<\infty$ for some $k>2$. Using this result an asymptotic generalization of De Bruijn's identity is obtained.

UDC: 621.391.1:519.27

Received: 05.04.1994


 English version:
Problems of Information Transmission, 1995, 3:1, 14–22

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024