RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1995 Volume 31, Issue 3, Pages 24–34 (Mi ppi281)

This article is cited in 1 paper

Information Theory

The Law of Large Numbers for Capacity of Memoryless Channels with a Random Matrix of Transition Probabilities

A. S. Ambrosimov, A. N. Timashev


Abstract: We prove that the capacity of a discrete memoryless channel with a random $n\times n$ matrix of transition probabilities tends almost surely to $1-\gamma$ as $n\to\infty$, where $\gamma=0,5772\dots$ is the Euler constant.

UDC: 621.391.1:519.2

Received: 05.07.1994


 English version:
Problems of Information Transmission, 1995, 31:3, 216–224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024