RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1996 Volume 32, Issue 2, Pages 68–76 (Mi ppi338)

Methods of Signal Processing

Local Asymptotical Normality for Stationary Gaussian Sequences with Degenerate Spectral Density

N. K. Bakirov


Abstract: The property of local asymptotical normality (at a point $\theta_0$) is proved for a stationary Gaussian sequence with spectral density $f(\lambda,\theta)$, $\theta\in\mathbb R^1$, which may have zeros, or, more specifically, $\rm{mes}\{\lambda|f(\lambda,\theta_0)=0\}=0$, where mes denotes the Lebesgue measure. In addition, we prove standard inequalities, the validity of which, along with the property of local asymptotical normality, assures “good” asymptotical properties of the estimates of maximal likelihood and Bayesian estimates for the parameter $\theta$.

UDC: 621.391.1:519.28

Received: 15.03.1995


 English version:
Problems of Information Transmission, 1996, 32:2, 197–204

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025