RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1999 Volume 35, Issue 4, Pages 59–67 (Mi ppi461)

This article is cited in 1 paper

Information Theory and Coding Theory

On Algebraic Decoding of Some Maximal Quaternary Codes and the Binary Golay Code

S. M. Dodunekov, V. A. Zinov'ev, J. Nilsson


Abstract: The quaternary codes devised in [Probl. Inf. Trans., 14, No. 2, 174–181 (1978)] have minimum distance $d=5$. As was shown there, they can be decoded using a standard syndrome decoding algorithm. In the present paper, we derive a simple algebraic criterion to determine the number of errors occurred and reformulate the earlier decoding algorithm described in the paper mentioned. Since a [12,6,6] quaternary code yields a cascade description of a binary extended [24,12,8] Golay code, this description provides a new method for decoding binary Golay codes.

UDC: 621.391.15

Received: 29.07.1996
Revised: 29.06.1999


 English version:
Problems of Information Transmission, 1999, 35:4, 338–345

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024