Abstract:
The paper is devoted to the computation of stationary distributions of queueing
systems in random media. Results obtained for considered models follow from a theorem proved
in the paper. As an application of the theorem, we consider Jackson networks whose structure
(the set of working nodes, service and input flow intensities, routing matrix, state set) and type
(open/closed network) varies as the state of another network or of the environment changes.
Product-form formulas for the computation of stationary distributions of the considered networks
are obtained, and algorithms for the solution of auxiliary problems are developed.