RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2001 Volume 37, Issue 3, Pages 24–33 (Mi ppi524)

This article is cited in 1 paper

Information Theory and Coding Theory

New Minimum Distance Bounds for Linear Codes over Small Fields

R. N. Daskalov, T. A. Gulliver


Abstract: Let $[n,k,d]_q$-codes be linear codes of length $n$, dimension $k$, and minimum Hamming distance $d$ over $GF(q)$. In this paper we consider codes over $GF(3)$, $GF(5)$, $GF(7)$, and $GF(8)$. Over $GF(3)$, three new linear codes are constructed. Over $GF(5)$, eight new linear codes are constructed and the nonexistence of six codes is proved. Over $GF(7)$, the existence of 33 new codes is proved. Over $GF(8)$, the existence of ten new codes and the nonexistence of six codes is proved. All of these results improve the corresponding lower and upper bounds in Brouwer's table [1].

UDC: 621.391.15

Received: 15.02.2001


 English version:
Problems of Information Transmission, 2001, 37:3, 206–215

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024