RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2001 Volume 37, Issue 4, Pages 71–84 (Mi ppi536)

This article is cited in 1 paper

Coding Theory

Binary Codes Formed by Functions with Nontrivial Inertia Groups

O. V. Denisov


Abstract: Let $K$ be a permutation group acting on binary vectors of length $n$ and $F_K$ be a code of length $2^n$ consisting of all binary functions with nontrivial inertia group in $K$. We obtain upper and lower bounds on the covering radii of $F_K$, where $K$ are certain subgroups of the affine permutation group $GA_n$. We also obtain estimates for distances between $F_K$ and almost all functions in $n$ variables as $n\to\infty$. We prove the existence of functions with the trivial inertia group in $GA_n$ for all $n\ge 7$. An upper bound for the asymmetry of a $k$-uniform hypergraph is obtained.

UDC: 621.391.15

Received: 17.01.2001


 English version:
Problems of Information Transmission, 2001, 37:4, 339–352

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024