RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1990 Volume 26, Issue 1, Pages 46–57 (Mi ppi592)

Methods of Signal Processing

Minimax Estimation of Linear Functionals in the Presence of Two-Dimensional Noise

V. S. Lebedev


Abstract: Problems of linear minimax estimation of linear functions from observations in a Gaussian random field are considered. The results of [I. A. Ibragimov and R. Z. Khas'minskii, Teor. Veroyatn. Primen., 29, No. 1, 19–32 (1984); 32, No. 1, 35–44 (1987)] are extended to this case. As an example, we examine minimax estimation of the value of the function $f(t,s)$ and its derivatives $\partial^{\alpha}f(t, s)/\partial t^{\alpha_1}\partial s^{\alpha_2}$. It is shown that the problems of estimation of a certain class of unbounded (in $L_2$) linear functions from observations in random fields with correlation operators $I$ and $R$ are equivalent in a certain sense if $R =I+K$, where $I$ is the identity operator and $K$ is a completely continuous operator.

UDC: 621.391.1

Received: 25.04.1988


 English version:
Problems of Information Transmission, 1990, 26:1, 38–48

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025