RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1990 Volume 26, Issue 3, Pages 12–20 (Mi ppi614)

This article is cited in 2 papers

Information Theory and Coding Theory

Majority-Logic Decoding of Generalized Reed–Muller Codes

I. I. Grushko


Abstract: We consider the possibility of simple (i.e., when the number of checks increases as $n\log_2 n$ with code length $n$) majority-logic decoding of generalized Reed–Muller codes (GRM codes), defined as various powers of the radical of the group algebra of the group of type $(p,\dots,p)$ over a field of characteristic $p$. A simple majority-logic decoding algorithm realizing the code distance is constructed for first-order $p$-ary GRM codes and for ternary GRM codes of any order.

UDC: 621.391.15

Received: 03.01.1989


 English version:
Problems of Information Transmission, 1990, 26:3, 189–196

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024