RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1989 Volume 25, Issue 1, Pages 33–37 (Mi ppi636)

This article is cited in 5 papers

Coding Theory

On the Straight-Line Bound for the Undetected Error Exponent

V. I. Levenshtein


Abstract: We derive a one-parametric family of lower bounds for the undetected error probability of a code in a binary symmetric channel. With an optimally chosen parameter, these bounds lead to the so-called straight-line bound for the undetected error exponent. The straight-line bound is asymptotically exact if the Varshamov-Gilbert bound for the distance of binary codes is asymptotically exact.

UDC: 621.391.15:681.3.053

Received: 06.01.1987


 English version:
Problems of Information Transmission, 1989, 25:1, 24–27

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025