RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1972 Volume 8, Issue 1, Pages 26–35 (Mi ppi772)

This article is cited in 3 papers

Coding Theory

On Perfect Codes

V. A. Zinov'ev, V. K. Leont'ev


Abstract: It is shown that the length of a nontrivial perfect code over the Galois field $GF(q)$ correcting $t\geqslant8$ errors is strictly bounded on both sides. This result implies that for values of $q=2,3,4,5,7$ and 8 nontrivial perfect codes other than the already known Hamming and Golay codes are nonexistent.

UDC: 621.395.154, 512.8

Received: 25.08.1971


 English version:
Problems of Information Transmission, 1972, 8:1, 17–24

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024