RUS
ENG
Full version
JOURNALS
// Problemy Peredachi Informatsii
// Archive
Probl. Peredachi Inf.,
1987
Volume 23,
Issue 4,
Pages
110–113
(Mi ppi835)
This article is cited in
1
paper
Ņorrespondence
Greismer Codes with Maximum Covering Radius
S. M. Dodunekov
Abstract:
Let
$C$
be a
$(k, d)$
Greismer code with covering radius
$\rho(C)$
. We prove that if
$d>2^k$
or d belongs to Belov intervals of dimension
$k+1$
, then
$\rho(C)\leq d-2$
. All Greismer codes
$C$
with
$\rho(C)\leq d-1$
are described.
UDC:
621.391.15
Received:
12.08.1985
Fulltext:
PDF file (344 kB)
Cited by
English version:
Problems of Information Transmission, 1987,
23
:4,
344–346
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025