RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1987 Volume 23, Issue 4, Pages 110–113 (Mi ppi835)

This article is cited in 1 paper

Ņorrespondence

Greismer Codes with Maximum Covering Radius

S. M. Dodunekov


Abstract: Let $C$ be a $(k, d)$ Greismer code with covering radius $\rho(C)$. We prove that if $d>2^k$ or d belongs to Belov intervals of dimension $k+1$, then $\rho(C)\leq d-2$. All Greismer codes $C$ with $\rho(C)\leq d-1$ are described.

UDC: 621.391.15

Received: 12.08.1985


 English version:
Problems of Information Transmission, 1987, 23:4, 344–346

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025