RUS  ENG
Full version
JOURNALS // Kvantovaya Elektronika // Archive

Kvantovaya Elektronika, 2013 Volume 43, Number 5, Pages 443–448 (Mi qe15040)

This article is cited in 7 papers

Interaction of laser radiation with matter. Laser plasma

Generation of intense coherent attosecond X-ray pulses using relativistic electron mirrors

V. V. Kulagina, V. N. Kornienkob, V. A. Cherepeninb, H. Sukc

a Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute
b Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow
c Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Republic of Korea

Abstract: We analyse the steepening of the leading edge of femtosecond petawatt pulses with the use of plasma layers and show that, at an electron density several times higher than the critical one, an asymmetric (in time domain) pulse can be produced with an amplitude of the first half-wave differing little from the maximum pulse amplitude. Using numerical simulation, we have studied the interaction of such pulses with nanometre-thick films, including the generation of relativistic electron mirrors and the reflection of a counterpropagating probe pulse from such mirrors. The resulting coherent X-ray pulses have a duration of ~120 as and a power of ~600 GW at a wavelength of ~13 nm. Our results demonstrate that the reflectivity of a relativistic electron mirror situated in the accelerating pulse field is independent of the probe pulse amplitude when it increases up to the accelerating pulse amplitude.

Keywords: generation of coherent attosecond X-ray pulses, very intense nonadiabatic laser pulses, relativistic electron mirrors.

PACS: 52.38.Ph, 52.59.Ye, 42.65.Re

Received: 24.10.2012
Revised: 14.01.2013


 English version:
Quantum Electronics, 2013, 43:5, 443–448

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024