Abstract:
We consider realisation of different generation regimes in an autonomous ring chip laser, which is a rather complicated problem. We offer and demonstrate a simple and effective method for controlling the radiation dynamics of a ring Nd:YAG chip laser when it is subjected to a stationary magnetic field producing both frequency and substantial amplitude nonreciprocities. The amplitude and frequency nonreciprocities of a ring cavity, arising under the action of this magnetic field, change when the magnet is moved with respect to the active element of the chip laser. Some self-modulation and stationary generation regimes as well as the regime of beatings and dynamic chaos regime are experimentally realised. Temporal and spectral characteristics of radiation are studied and conditions for the appearance of the generation regime are found.
Keywords:solid-state ring laser, self-modulation generation regime, regime of beatings, dynamic chaos, amplitude and frequency nonreciprocities of ring cavity.