Abstract:
Mechanisms of formation of sub- and micrometre-scale holes in thin silver and chromium films of variable thickness by tightly-focused single nanosecond IR laser pulses with fluences in the range of 10 – 104 J cm-2 are studied by means of optical and scanning electron microscopy. At the minimal fluences above 5 J cm-2, the micrometre (2 – 5 μm in radius) holes are produced in these films, accompanying the lateral heat conduction in the film during the pump laser pulse, cavitation at the metallic/glass interface and subsequent explosive removal of the molten film. At the fluences of ~1 – 10 kJ cm-2 much larger (20 – 40 μm in radius) holes are formed in the film as a result of its heating by the erosive surface microplasma through the lateral heat conduction in the film during the plasma lifetime of the order of a few microseconds. Finally, at the maximal fluences (well above 10 kJ cm-2), the submillimetre holes were produced in these films by intense shock waves, generated in the erosive microplasmas. The comparative analysis of the formation mechanisms for sub- and micrometrescale holes in the same thin metal films by the single nano- and femtosecond laser pulses is provided.
Keywords:nano- and femtosecond laser pulses, thin metal films, sub- and micrometre holes, lateral heat conduction, vaporisation, erosive (ablative) plasma, shock wave.