Abstract:
This paper considers the surface nanostructuring of polymers and glasses by femtosecond laser pulses using an array of colloidal particles as a focusing system. We demonstrate that partial conversion of the femtosecond laser pulse energy into the second harmonic considerably reduces the surface modification threshold and the size of the resulting structural elements. At intensities above 1012 W cm-2, surface modification (ablation and swelling) occurs through free carrier generation. In this process, the second harmonic is more efficient in multiphoton ionisation, whereas the fundamental is more efficient in impact ionisation. The second harmonic is better focused by colloidal particle arrays than is the fundamental. As a result, the use of bichromatic pulses ensures a decrease in both the surface modification threshold and the size of the resulting structural elements. We discuss the optical properties of colloidal particle arrays and the ways of producing such arrays on dielectric substrates.