Abstract:
This paper examines for the first time the nature of an anomalous scatter in the birefringence beat length in an anisotropic silica fibre upon changes in its temperature. The effect has been studied by a conventional interferometric technique, using a spectrum analyser. The dispersion of the scatter in the beat length has been shown to be considerably higher at short fibre lengths, which is due to the effect of the protective coating. To interpret the observed effects, a physical model has been proposed which considers random centres, such as microbends, which form and disappear in the protective coating of the fibre in response to temperature changes. The random nature of such local centres may lead to unpredictable changes in the birefringence of anisotropic fibres and, hence, to changes in the sensitivity and accuracy of Faraday effect current sensors.