Abstract:
The high energy of the XCELS laser allows the production of a large number of laser-heated/accelerated particles and the products of their initiated nuclear reactions in a large-volume transparent microstructured medium. As an example, the regime of laser–plasma interaction is studied at a moderately relativistic heating-pulse intensity of ∼1018 W·cm–2 in a sufficiently large volume of a microcluster medium, which does not require tight focusing of a high-power laser beam (beams), thereby simplifying the experiment. If it has already been shown previously that for a laser pulse with an energy of ∼1 J, under certain conditions for the geometric and compositional parameters of a deuterium-containing cluster target, it is possible to maximize the yield of hot superponderomotive electrons and explosively accelerated deuterons, then here the approach is extended to a femtosecond laser driver with an energy hundreds of times greater (300–400 J). Recommendations are given for obtaining a record number of laser-heated deuterons of moderate energies (0.2–2 MeV) in a large volume of a cluster medium (heavy water spray) at a level of 1015 particles per shot and for developing a superbright source of thermonuclear DD neutrons with an expected peak flux of ∼1018 neutrons·cm–2·s·–1.
Keywords:multipetawatt lasers, large-volume transparent microstructured media, laser acceleration of electrons and deuterons, superbright sources of thermonuclear neutrons.