RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2021 Volume 26, Issue 4, Pages 402–438 (Mi rcd1123)

Stability of the Relative Equilibria in the Two-body Problem on the Sphere

Jaime Andradea, Claudio Vidala, Claudio Sierpeb

a Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, VIII-Región, Chile
b Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, VIII-Región, Chile

Abstract: We consider the 2-body problem in the sphere $\mathbb{S}^2$. This problem is modeled by a Hamiltonian system with $4$ degrees of freedom and, following the approach given in [4], allows us to reduce the study to a system of $2$ degrees of freedom. In this work we will use theoretical tools such as normal forms and some nonlinear stability results on Hamiltonian systems for demonstrating a series of results that will correspond to the open problems proposed in [4] related to the nonlinear stability of the relative equilibria. Moreover, we study the existence of Hamiltonian pitchfork and center-saddle bifurcations.

Keywords: two-body-problem on the sphere, Hamiltonian formulation, normal form, resonance, nonlinear stability.

MSC: 70F07, 70G60, 37D40

Language: English

DOI: 10.1134/S1560354721040067



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024