RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2021 Volume 26, Issue 6, Pages 756–762 (Mi rcd1144)

This article is cited in 1 paper

Regular Papers

Expansiveness and Hyperbolicity in Convex Billiards

Mário Bessaa, João Lopes Diasb, Maria Joana Torresc

a Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
b Departamento de Matemática, CEMAPRE and REM, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
c CMAT and Departamento de Matemática, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal

Abstract: We say that a convex planar billiard table $B$ is $C^2$-stably expansive on a fixed open subset $U$ of the phase space if its billiard map $f_B$ is expansive on the maximal invariant set $\Lambda_{B,U}=\bigcap_{n\in\mathbb{Z}}f^n_B(U)$, and this property holds under $C^2$-perturbations of the billiard table. In this note we prove for such billiards that the closure of the set of periodic points of $f_B$ in $\Lambda_{B,U}$ is uniformly hyperbolic. In addition, we show that this property also holds for a generic choice among billiards which are expansive.

Keywords: convex planar billiards, hyperbolic sets, expansiveness.

MSC: 37D20, 37D50, 37C20

Received: 31.03.2021
Accepted: 29.10.2021

Language: English

DOI: 10.1134/S1560354721060125



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024