Abstract:
We address the following question: let
$F:(\mathbb {R}^2,0)\to(\mathbb {R}^2,0)$ be an analytic local diffeomorphism defined
in the neighborhood of the nonresonant elliptic fixed point 0 and
let $\Phi$ be a formal conjugacy to a normal form $N$. Supposing
$F$ leaves invariant the foliation by circles centered at $0$, what is
the analytic nature of $\Phi$ and $N$?
Keywords:normal form, Arnold family, weakly attracting fixed point.