Abstract:
In this paper we study an asymmetric valley-ridge inflection point (VRI) potential,
whose energy surface (PES) features two sequential index-1 saddles (the upper and the lower),
with one saddle having higher energy than the other, and two potential wells separated by the
lower index-1 saddle. We show how the depth and the flatness of our potential changes as we
modify the parameter that controls the asymmetry as well as how the branching ratio (ratio
of the trajectories that enter each well) is changing as we modify the same parameter and its
correlation with the area of the lobes as they have been formed by the stable and unstable
manifolds that have been extracted from the gradient of the LD scalar fields.
Keywords:phase space structure, Lagrangian descriptors, chemical reaction dynamics, valley
ridge inflection point potential.