RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2022 Volume 27, Issue 3, Pages 281–306 (Mi rcd1165)

This article is cited in 2 papers

Alexey Borisov Memorial Volume

Escape Times Across the Golden Cantorus of the Standard Map

Narcís Miguela, Carles Simóa, Arturo Vieiroab

a Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
b Centre de Recerca Matemàtica, Campus Bellaterra, 08193 Bellaterra, Spain

Abstract: We consider the Chirikov standard map for values of the parameter larger than but close to Greene's $k_G$. We investigate the dynamics near the golden Cantorus and study escape rates across it. Mackay [17, 19] described the behaviour of the mean of the number of iterates $\left<N_k\right>$ to cross the Cantorus as $k\to k_G$ and showed that there exists $B<0$ so that $\left<N_k\right>(k-k_G)^B$ becomes 1-periodic in a suitable logarithmic scale. The numerical explorations here give evidence of the shape of this periodic function and of the relation between the escape rates and the evolution of the stability islands close to the Cantorus.

Keywords: standard map, diffusion through a Cantor set, escape times.

MSC: 37E40, 37E20, 37C05

Received: 29.10.2021
Accepted: 19.04.2022

Language: English

DOI: 10.1134/S1560354722030029



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024