RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2022 Volume 27, Issue 6, Pages 647–667 (Mi rcd1185)

This article is cited in 1 paper

Alexey Borisov Memorial Volume

Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Hénon Map

Sergey V. Gonchenkoab, Klim A. Safonovb, Nikita G. Zelentsova

a Mathematical Center “Mathematics of Future Technologies”, Lobachevsky State University of Nizhny Novgorod, pr. Gagarin 23, 603022 Nizhny Novgorod, Russia
b Laboratory of Dynamical Systems and Applications, National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia

Abstract: We propose a new method for constructing multidimensional reversible maps by only two input data: a diffeomorphism $T_1$ and an involution $h$, i.e., a map (diffeomorphism) such that $h^2 = Id$. We construct the desired reversible map $T$ in the form $T = T_1\circ T_2$, where $T_2 = h\circ T_1^{-1}\circ h$. We also discuss how this method can be used to construct normal forms of Poincaré maps near mutually symmetric pairs of orbits of homoclinic or heteroclinic tangencies in reversible maps. One of such normal forms, as we show, is a two-dimensional double conservative Hénon map $H$ of the form $\bar x = M + cx - y^2; \ y = M + c\bar y - \bar x^2$. We construct this map by the proposed method for the case when $T_1$ is the standard Hénon map and the involution $h$ is $h: (x,y) \to (y,x)$. For the map $H$, we study bifurcations of fixed and period-2 points, among which there are both standard bifurcations (parabolic, period-doubling and pitchfork) and singular ones (during transition through $c=0$).

Keywords: reversible diffeomorphism, parabolic bifurcation, period-doubling bifurcation.

MSC: 37G10,37G25

Received: 21.09.2022
Accepted: 24.10.2022

Language: English

DOI: 10.1134/S1560354722060041



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024