RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2023 Volume 28, Issue 3, Pages 265–294 (Mi rcd1205)

This article is cited in 1 paper

Numerical and Theoretical Studies on the Rational Standard Map at Moderate-to-Large Values of the Amplitude Parameter

Pablo M. Cincottaa, Claudia M. Giordanoa, Carles Simób

a Grupo de Caos en Sistemas Hamiltonianos, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (CONICET), Paseo del Bosque S/N, B1900FWA La Plata, Argentina
b Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain

Abstract: In this work an exhaustive numerical and analytical investigation of the dynamics of a bi-parametric symplectic map, the so-called rational standard map, at moderate-to-large values of the amplitude parameter is addressed. After reviewing the model, a discussion concerning an analytical determination of the maximum Lyapunov exponent is provided together with thorough numerical experiments. The theoretical results are obtained in the limit of a nearly uniform distribution of the phase values. Correlations among phases lead to departures from the expected estimates. In this direction, a detailed study of the role of stable periodic islands of periods 1, 2 and 4 is included. Finally, an experimental relationship between the Lyapunov and instability times is shown, while an analytical one applies when correlations are irrelevant, which is the case, in general, for large values of the amplitude parameter.

Keywords: analytical and numerical methods, periodic orbits, chaos, area-preserving maps.

MSC: 37J25

Received: 24.01.2023
Accepted: 26.04.2023

Language: English

DOI: 10.1134/S1560354723030024



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024