RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2023 Volume 28, Issue 4-5, Pages 543–560 (Mi rcd1220)

This article is cited in 2 papers

Special Issue: On the 80th birthday of professor A. Chenciner

Hamiltonian Paradifferential Birkhoff Normal Form for Water Waves

Massimiliano Bertia, Alberto Masperoa, Federico Murganteab

a SISSA, Via Bonomea 265, 34136 Trieste, Italy
b Universita degli studi di Trieste, Dipartimento di Matematica e Geoscienze, Via Valerio 12/1, 34127 Trieste, Italy

Abstract: We present the almost global in time existence result in [13] of small amplitude space periodic solutions of the 1D gravity-capillary water waves equations with constant vorticity and we describe the ideas of proof. This is based on a novel Hamiltonian paradifferential Birkhoff normal form approach for quasi-linear PDEs.

Keywords: water waves equations, vorticity, Hamiltonian Birkhoff normal form, paradifferential calculus.

MSC: 76B15, 37K55, 37J40

Received: 28.02.2023
Accepted: 24.07.2023

Language: English

DOI: 10.1134/S1560354723040032



© Steklov Math. Inst. of RAS, 2024