RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2024 Volume 29, Issue 2, Pages 369–375 (Mi rcd1259)

Hyperbolic Attractors Which are Anosov Tori

Marina K. Barinova, Vyacheslav Z. Grines, Olga V. Pochinka, Evgeny V. Zhuzhoma

HSE University, ul. Bolshaya Pecherckaya 25/12, 603155 Nizhny Novgorod, Russia

Abstract: We consider a topologically mixing hyperbolic attractor $\Lambda\subset M^n$ for a diffeomorphism $f:M^n\to M^n$ of a compact orientable $n$-manifold $M^n$, $n>3$. Such an attractor $\Lambda$ is called an Anosov torus provided the restriction $f|_{\Lambda}$ is conjugate to Anosov algebraic automorphism of $k$-dimensional torus $\mathbb T^k$. We prove that $\Lambda$ is an Anosov torus for two cases: 1) $\dim{\Lambda}=n-1$, $\dim{W^u_x}=1$, $x\in\Lambda$; 2) $\dim\,\Lambda=k,\,\dim\, W^u_x=k-1,\,x\in\Lambda$, and $\Lambda$ belongs to an $f$-invariant closed $k$-manifold, $2\leqslant k\leqslant n$, topologically embedded in $M^n$.

Keywords: hyperbolic attractor, Anosov diffeomorphism, $\Omega$-stable diffeomorphism, chaotic attractor

MSC: 37D05

Received: 18.05.2023
Accepted: 25.10.2023

Language: English

DOI: 10.1134/S1560354723540018



© Steklov Math. Inst. of RAS, 2024