RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2025 Volume 30, Issue 4, Pages 538–549 (Mi rcd1319)

Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)

Singular KAM Theory for Convex Hamiltonian Systems

Santiago Barbieria, Luca Biascob, Luigi Chierchiab, Davide Zaccariac

a Departament d’Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, 6 Campus Montilivi, 17003 Girona, Spain
b Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy
c Department of Mathematics, University of Toronto, 40 St George St., M5S 2E4 Toronto, Canada

Abstract: In this note, we briefly discuss how the singular KAM theory of [7] — which was worked out for the mechanical case $\frac12 |y|^2+\varepsilon f(x)$ — can be extended to convex real-analytic nearly integrable Hamiltonian systems with Hamiltonian in action-angle variables given by $h(y)+\varepsilon f(x)$ with $h$ convex and $f$ generic.

Keywords: nearly integrable Hamiltonian systems, convex Hamiltonians, measure of invariant tori, simple resonances, Arnold – Kozlov – Neishtadt conjecture, singular KAM theory

MSC: 37J05, 37J35, 37J40, 70H05, 70H08, 70H15

Received: 18.06.2025
Accepted: 18.07.2025

Language: English

DOI: 10.1134/S1560354725040057



© Steklov Math. Inst. of RAS, 2025