RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2014 Volume 19, Issue 4, Pages 495–505 (Mi rcd176)

This article is cited in 12 papers

Birth of Discrete Lorenz Attractors at the Bifurcations of 3D Maps with Homoclinic Tangencies to Saddle Points

Sergey V. Gonchenkoa, Ivan I. Ovsyannikovab, Joan C. Tatjerc

a Nizhny Novgorod State University, pr. Gagarina 23, Nizhny Novgorod, 603000 Russia
b Imperial College London, SW7 2AZ, London, UK
c Dept. de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Abstract: It was established in [1] that bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a saddle-focus fixed point with the Jacobian equal to 1 can lead to Lorenz-like strange attractors. In the present paper we prove an analogous result for three-dimensional diffeomorphisms with a homoclinic tangency to a saddle fixed point with the Jacobian equal to 1, provided the quadratic homoclinic tangency under consideration is nonsimple.

Keywords: Homoclinic tangency, rescaling, 3D Hénon map, bifurcation, Lorenz-like attractor.

MSC: 37C05, 37G25, 37G35

Received: 11.04.2014
Accepted: 25.04.2014

Language: English

DOI: 10.1134/S1560354714040054



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024