RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2016 Volume 21, Issue 6, Pages 707–719 (Mi rcd220)

This article is cited in 4 papers

The Nekhoroshev Theorem and the Observation of Long-term Diffusion in Hamiltonian Systems

Massimiliano Guzzoa, Elena Legab

a Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste, 63 - 35121, Padova, Italy
b Laboratoire Lagrange, UMR7293, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Nice, France

Abstract: The long-term diffusion properties of the action variables in real analytic quasiintegrable Hamiltonian systems is a largely open problem. The Nekhoroshev theorem provides bounds to such a diffusion as well as a set of techniques, constituting its proof, which have been used to inspect also the instability of the action variables on times longer than the Nekhoroshev stability time. In particular, the separation of the motions in a superposition of a fast drift oscillation and an extremely slow diffusion along the resonances has been observed in several numerical experiments. Global diffusion, which occurs when the range of the slow diffusion largely exceeds the range of fast drift oscillations, needs times larger than the Nekhoroshev stability times to be observed, and despite the power of modern computers, it has been detected only in a small interval of the perturbation parameter, just below the critical threshold of application of the theorem. In this paper we show through an example how sharp this phenomenon is.

Keywords: Hamiltonian systems, Nekhoroshev theorem, long-term stability, diffusion.

MSC: 70H08

Received: 15.09.2016
Accepted: 08.11.2016

Language: English

DOI: 10.1134/S1560354716060101



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024