RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2011 Volume 16, Issue 3-4, Pages 210–222 (Mi rcd436)

On Rosenhain–Göpel Configurations and Integrable Systems

Luis A. Piovan

Departamento de Matemática, Universidad Nacional del Sur 8000 Bahía Blanca, Argentina

Abstract: We give a birational morphism between two types of genus 2 Jacobians in ${\mathbb P}^{15}$. One of them is related to an Algebraic Completely Integrable System: the Geodesic Flow on $SO(4)$, metric II (so termed after Adler and van Moerbeke). The other Jacobian is related to a linear system in $|4 \Theta|$ with 12 base points coming from a Göpel tetrad of 4 translates of the $\Theta$ divisor. A correspondence is given on the base spaces so that the Poisson structure of the $SO(4)$ system can be pulled back to the family of Göpel Jacobians.

Keywords: integrable systems.

MSC: 58F07, 14K25

Received: 28.04.2010
Accepted: 21.08.2010

Language: English

DOI: 10.1134/S1560354711030038



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024