RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2007 Volume 12, Issue 3, Pages 233–266 (Mi rcd623)

This article is cited in 28 papers

Bifurcations of Three-Dimensional Diffeomorphisms with Non-Simple Quadratic Homoclinic Tangencies and Generalized Hénon Maps

S. V. Gonchenkoa, V. S. Gonchenkoa, J. C. Tatjerb

a Institute for Applied Mathematics and Cybernetics, ul. Uljanova 10, Nizhny Novgorod, 603005 Russia
b Departament de Matemática Aplicada i Análisi, Gran Via de les Corts Catalanes 585, Barcelona 08007, Spain

Abstract: We study bifurcations of periodic orbits in two parameter general unfoldings of a certain type homoclinic tangency (called a generalized homoclinic tangency) to a saddle fixed point. We apply the rescaling technique to first return (Poincaré) maps and show that the rescaled maps can be brought to so-called generalized Hénon maps which have non-degenerate bifurcations of fixed points including those with multipliers $e^{\pm i \phi}$. On the basis of this, we prove the existence of infinite cascades of periodic sinks and periodic stable invariant circles.

Keywords: homoclinic tangency, rescaling, generalized Henon map, bifurcation.

MSC: 37C05, 37G25, 37G35

Received: 03.03.2007
Accepted: 10.05.2007

Language: English

DOI: 10.1134/S156035470703001X



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024