RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2005 Volume 10, Issue 2, Pages 145–152 (Mi rcd703)

This article is cited in 7 papers

150th anniversary of H. Poincaré

Generating discrete Painlevé equations from affine Weyl groups

B. Grammaticosa, A. Ramanib

a GMPIB, Université Paris VII, Tour 24-14, 5e étage, case 7021, 75251 Paris, France
b CPT, Ecole Polytechnique, CNRS, UMR 7644, 91128 Palaiseau, France

Abstract: We show how, starting from the geometrical description of discrete Painlevé equations in terms of affine Weyl groups, one can generate new second-order systems. We use this approach to introduce a new definition of the discrete Painlevé equations which eschews the reference to continuous systems.

Keywords: discrete Painlevé equations, integrability, Weyl groups, Bücklund transformations.

MSC: 39A10

Received: 12.11.2004
Accepted: 18.01.2005

Language: English

DOI: 10.1070/RD2005v010n02ABEH000308



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024