RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2001 Volume 6, Issue 2, Pages 205–210 (Mi rcd838)

This article is cited in 19 papers

The Riemannium

P. Leboeuf, A. Monastra, O. Bohigas

Laboratoire de Physique Théorique et Modèles Statistiques, Unité Mixte de Recherche de l'Université Paris XI et du CNRS Bât. 100, Université de Paris-Sud, 91405 Orsay Cedex, France

Abstract: The properties of a fictitious, fermionic, many-body system based on the complex zeros of the Riemann zeta function are studied. The imaginary part of the zeros are interpreted as mean-field single-particle energies, and one fills them up to a Fermi energy $E_F$. The distribution of the total energy is shown to be non-Gaussian, asymmetric and independent of $E_F$ in the limit $E_F \to \infty$. The moments of the limit distribution are computed analytically. The autocorrelation function, the finite energy corrections, and a comparison with random matrix theory are also discussed.

MSC: 11M26, 82B44

Received: 21.03.2001

Language: English

DOI: 10.1070/RD2001v006n02ABEH000170



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025