RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 1999 Volume 4, Issue 3, Pages 45–52 (Mi rcd911)

This article is cited in 9 papers

On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$

K. P. Hadelera, E. N. Selivanovab

a Mathematische Fakultät, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
b Department of Geometry, Nizhny Novgorod State Pedagogical University, 603000 Russia, Nizhny Novgorod, ul. Ulyanova 1

Abstract: There is a well-known example of an integrable conservative system on $S^2$, the case of Kovalevskaya in the dynamics of a rigid body, possessing an integral of fourth degree in momenta. The aim of this paper is to construct new families of examples of conservative systems on $S^2$ possessing an integral of fourth degree in momenta.

MSC: 34C40, 58F05, 58F07, 58D17, 70E15

Received: 06.01.1999

Language: English

DOI: 10.1070/RD1999v004n03ABEH000115



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024