RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 1998 Volume 3, Issue 3, Pages 56–72 (Mi rcd948)

This article is cited in 39 papers

On the 70th birthday of J.Moser

Nekhoroshev-stability of $L_4$ and $L_5$ in the spatial restricted three-body problem

G. Benettina, F. Fassòb, M. Guzzob

a Materia and Gruppo Naziotiale di Fisica Matematica (CNR), Istituto Nazionale di Fisica della, Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy
b Gruppo Naziotiale di Fisica Matematica (CNR.), Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy

Abstract: We show that $L_4$ and $L_5$ in the spatial restricted circular three-body problem are Nekhoroshev-stable for all but a few values of the reduced mass up to the Routh critical value. This result is based on two extensions of previous results on Nekhoroshev-stability of elliptic equilibria, namely to the case of "directional quasi-convexity", a notion introduced here, and to a (non-convex) steep case. We verify that the hypotheses are satisfied for $L_4$ and $L_5$ by means of numerically constructed Birkhoff normal forms.

MSC: 58F10, 58F36, 70F07

Received: 07.10.1998

Language: English

DOI: 10.1070/RD1998v003n03ABEH000080



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025