RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2022 Volume 77, Issue 4(466), Pages 3–90 (Mi rm10046)

This article is cited in 4 papers

Equivariant completions of affine spaces

I. V. Arzhantsev, Yu. I. Zaitseva

HSE University

Abstract: We survey recent results on open embeddings of the affine space $\mathbb{C}^n$ into a complete algebraic variety $X$ such that the action of the vector group $\mathbb{G}_a^n$ on $\mathbb{C}^n$ by translations extends to an action of $\mathbb{G}_a^n$ on $X$. We begin with the Hassett–Tschinkel correspondence describing equivariant embeddings of $\mathbb{C}^n$ into projective spaces and present its generalization for embeddings into projective hypersurfaces. Further sections deal with embeddings into flag varieties and their degenerations, complete toric varieties, and Fano varieties of certain types.
Bibliography: 109 titles.

Keywords: affine space, algebraic variety, algebraic group, additive action, local algebra, projective space, quadric, flag variety, grading, locally nilpotent derivation, toric variety, Cox ring, Demazure root.

UDC: 512.74+512.71

MSC: Primary 14L30, 14R10; Secondary 13E10, 14M25, 20M32

Received: 06.01.2022

DOI: 10.4213/rm10046


 English version:
Russian Mathematical Surveys, 2022, 77:4, 571–650

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025