RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2022 Volume 77, Issue 3(465), Pages 3–72 (Mi rm10058)

This article is cited in 5 papers

Elements of hyperbolic theory on an infinite-dimensional torus

S. D. Glyzina, A. Yu. Kolesov

a Demidov Yaroslavl' State University

Abstract: On the infinite-dimensional torus $\mathbb{T}^{\infty}=E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional Banach torus and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon\mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ whose differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$ elements of hyperbolic theory are presented systematically, starting with definitions and some auxiliary facts and ending by more advanced results. The latter include a criterion for hyperbolicity, a theorem on the $C^1$-roughness of hyperbolicity for diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$, the Hadamard–Perron theorem, as well as a fundamental result of hyperbolic theory, the fact that each Anosov diffeomorphism $G\in\operatorname{Diff}(\mathbb{T}^{\infty})$ has a stable and an unstable invariant foliation.
Bibliography: 34 titles.

Keywords: integer lattice, infinite-dimensional torus, diffeomorphism, hyperbolicity, Hadamard–Perron theorem, invariant foliations.

UDC: 517.926

MSC: Primary 37D20, 46T20; Secondary 37E30, 58B20

Received: 16.04.2022

DOI: 10.4213/rm10058


 English version:
Russian Mathematical Surveys, 2022, 77:3, 379–443

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025