RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 1976 Volume 31, Issue 1(187), Pages 203–216 (Mi rm3645)

This article is cited in 1 paper

Spectral theory of self-adjoint operators, and infinite-dimensional analysis

V. I. Gorbachuk, Yu. S. Samoilenko, G. F. Us


Abstract: In this paper we give a survey of results on some problems of the spectral theory of self-adjoint operators, closely connected with infinite-dimensional analysis. The following questions are considered: expansions in eigenfunctions of families of commuting self-adjoint operators, with applications to the derivation of representations of positive definite kernels in the form of continual integrals; and spectral analysis of self-adjoint operators acting on spaces of functions of an infinite-dimensional argument.

UDC: 513.88+517.9+519.4

MSC: 47B25, 47A70, 47B47, 35P05, 47Nxx

Received: 08.07.1975


 English version:
Russian Mathematical Surveys, 1976, 31:1, 217–231

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024