RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2001 Volume 56, Issue 6(342), Pages 67–88 (Mi rm453)

This article is cited in 53 papers

Geometric properties of eigenfunctions

D. Jakobsona, N. S. Nadirashvilia, J. Tothb

a McGill University
b University of Chicago

Abstract: We give an overview of some new and old results on geometric properties of eigenfunctions of Laplacians on Riemannian manifolds. We discuss properties of nodal sets and critical points, the number of nodal domains, and asymptotic properties of eigenfunctions in the high-energy limit (such as weak * limits, the rate of growth of $L^p$ norms, and relationships between positive and negative parts of eigenfunctions).

UDC: 514.74+517.95

MSC: Primary 58C40, 35P20; Secondary 35J05, 81Q50, 58J60, 32Q45, 37D50, 37D40

Received: 01.11.2001

DOI: 10.4213/rm453


 English version:
Russian Mathematical Surveys, 2001, 56:6, 1085–1105

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024