RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 1968 Volume 23, Issue 1(139), Pages 91–132 (Mi rm5593)

This article is cited in 19 papers

Best linear approximations of functions analytically continuable from a given continuum into a given region

V. D. Erokhin


Abstract: Let $K$ be a continuum (other than a single point) in the $z$-plane not disconnecting the plane, $\mathfrak{G}$ a simply-connected domain containing $K$. The class $A_K^{\mathfrak{G}}$ consists of those functions that are analytic in $\mathfrak{G}$ and satisfy the inequality
$$ |f(z)|\leqslant 1,\quad\mathbf\forall_z\in\mathfrak{G}. $$
The author proves the following theorem:
$$ H_\varepsilon(A_K^\mathfrak{G})\sim\tau\log_2^2\frac{1}{\varepsilon},\qquad\lim_{n\to\infty}d_n(A_K^\mathfrak{G})]^{\frac{1}{n}}=2^{-\frac{1}{\tau}}. $$
Here $H_\varepsilon$ is the $\varepsilon$-etropy of $A_K^{\mathfrak{G}}$, and $d_n$ the $n$-dimensional linear diameter of $ A_K^{\mathfrak{G}}$ in the space $ C(K)$ of all functions continuous on $K$. The norm on $ A_K^{\mathfrak{G}}$ is
$$ ||f(z)||=\max_{z\in K}|f(z)|. $$
For the proof a basis is constructed in the space $\mathscr H(\mathfrak{G})$ of functions holomorphic in $\mathfrak{G}$; it coincides with the Faber basis if $\partial\mathfrak{G}$ is a level curve of $K$. A fundamental part in this construction is played by a lemma which states that the domain $\mathfrak{G}\setminus K$ can be mapped conformally into a domain $\mathfrak{G}'\setminus K'$, where $\partial\mathfrak{G}'$ is a level curve of $K'$. In the appendix, which is written by A. L. Levin and V. M. Tikhomirov, a similar theorem is proved (under additional assumptions) for the case when $\mathfrak{G}$ is multiply-connected and $K$ may consist of several continua.

UDC: 517.5

MSC: 46A32, 46Gxx, 41A46, 46A45

Received: 08.08.1967


 English version:
Russian Mathematical Surveys, 1968, 23:1, 93–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024