Abstract:
This is a survey of the theory of quantum Teichmüller and Thurston spaces. The Thurston (or
train track) theory is described and quantized using the quantization of coordinates
for Teichmüller spaces of Riemann surfaces with holes. These surfaces admit a description by means of the fat graph construction proposed by Penner and Fock. In both theories the transformations in the quantum mapping class group that satisfy the pentagon relation play an important role. The space of canonical measured train tracks is interpreted as the completion
of the space of observables in 3D gravity, which are the lengths of closed geodesics on a Riemann surface with holes. The existence of such a completion is proved in both the classical and the quantum cases, and a number of algebraic structures arising in the corresponding theories are discussed.