Abstract:
Methods are considered for applying an algebra with bilinear commutation relations to the theory of quantum integrable systems. This survey describes most of the results obtained in this area over the last twenty years, mainly in connection with the computation of correlation functions of quantum integrable systems. Methods for constructing eigenfunctions of the quantum transfer matrix and computing inner products and correlation functions are presented in detail. An example of application of the general scheme to the model of the $X\!X\!Z$ Heisenberg chain is considered.