RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2004 Volume 59, Issue 6(360), Pages 55–72 (Mi rm795)

This article is cited in 8 papers

On solutions with infinite energy and enstrophy of the Navier–Stokes system

Yu. Yu. Bakhtina, E. I. Dinaburga, Ya. G. Sinaibc

a International Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
c Princeton University, Department of Mathematics

Abstract: The Cauchy problem is considered for the Navier–Stokes system. Local and global existence and uniqueness theorems are given for initial data whose Fourier transform decays at infinity as a power-law function with negative exponent and has a power-law singularity at zero. The paper contains a survey of known facts and some new results.

UDC: 517.957

MSC: Primary 35Q30; Secondary 35A05, 35A07, 76D05

Received: 14.10.2004

DOI: 10.4213/rm795


 English version:
Russian Mathematical Surveys, 2004, 59:6, 1061–1078

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025