RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2012 Volume 67, Issue 6(408), Pages 53–100 (Mi rm9498)

This article is cited in 34 papers

Conditions for $C^m$-approximability of functions by solutions of elliptic equations

M. Ya. Mazalova, P. V. Paramonovb, K. Yu. Fedorovskiyc

a Smolensk Branch of the Moscow Power Engineering Institute
b Moscow State University
c Bauman Moscow State Technical University

Abstract: This paper is a survey of results obtained over the past 20–30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces $C^m$ on compact subsets of Euclidean spaces.
Bibliography: 120 titles.

Keywords: $C^m$-approximation by holomorphic, harmonic, and polyanalytic functions; $C^m$-analytic and $C^m$-harmonic capacity; $s$-dimensional Hausdorff content; Vitushkin localization operator; Nevanlinna domains; Dirichlet problem.

UDC: 517.53

MSC: Primary 30E10; Secondary 31A05, 31A30, 31A35, 30C20

Received: 18.10.2012

DOI: 10.4213/rm9498


 English version:
Russian Mathematical Surveys, 2012, 67:6, 1023–1068

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025