RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2020 Volume 75, Issue 2(452), Pages 3–60 (Mi rm9922)

This article is cited in 8 papers

Solenoidal attractors of diffeomorphisms of annular sets

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a Demidov Yaroslavl State University
b Lomonosov Moscow State University

Abstract: An arbitrary diffeomorphism $\Pi$ of an annular set of the form $K=B\times \mathbb{T}$ is considered, where $B$ is a ball in a Banach space and $\mathbb{T}$ is a (finite- or infinite-dimensional) torus. A system of effective sufficient conditions is proposed which ensure that $P$ has a global attractor $A=\bigcap_{n\geqslant 0}\Pi^n(K)$ that can be represented as a generalized solenoid, that is, the inverse limit $\mathbb{T}\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots$, where $G$ is an expanding linear endomorphism of the torus $\mathbb{T}$. Furthermore, the restriction $\Pi|_{A}$ is topologically conjugate to a shift map of the solenoid.
Bibliography: 25 titles.

Keywords: annular set, diffeomorphism, attractor, generalized solenoid, shift map, hyperbolicity.

UDC: 517.926

MSC: 37D20

Received: 29.10.2019

DOI: 10.4213/rm9922


 English version:
Russian Mathematical Surveys, 2020, 75:2, 197–252

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024