RUS
ENG
Full version
JOURNALS
// Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
// Archive
Sib. Èlektron. Mat. Izv.,
2018
Volume 15,
Pages
1463–1484
(Mi semr1008)
Differentical equations, dynamical systems and optimal control
About the whole behavior of trajectories of Darboux systems with cubic nonlinearities
E. P. Volokitin
ab
,
V. M. Cheresiz
a
a
Sobolev Institute of Mathematics 4, Acad. Koptyug avenue, Novosibirck, 630090, Russia
b
Novosibirsk State University, 2, Pirogova Str., Novosibirck, 630090, Russia
Abstract:
We study the local and global behavior of trajectories of the differential systems of the form
$\dot x= x+P_3(x,y), \dot y=y+Q_3(x,y)$
where
$P_3(x,y)$
and
$Q_3(x,y)$
are homogeneous cubic polynomials with a common factor.
Keywords:
polynomial systems, singular points, Poincaré equator, phase portraits.
UDC:
517.925
MSC:
34С05
Received
October 10, 2018
, published
November 23, 2018
DOI:
10.33048/semi.2018.15.120
Fulltext:
PDF file (316 kB)
References
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024