RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 1463–1484 (Mi semr1008)

Differentical equations, dynamical systems and optimal control

About the whole behavior of trajectories of Darboux systems with cubic nonlinearities

E. P. Volokitinab, V. M. Cheresiza

a Sobolev Institute of Mathematics 4, Acad. Koptyug avenue, Novosibirck, 630090, Russia
b Novosibirsk State University, 2, Pirogova Str., Novosibirck, 630090, Russia

Abstract: We study the local and global behavior of trajectories of the differential systems of the form $\dot x= x+P_3(x,y), \dot y=y+Q_3(x,y)$ where $P_3(x,y)$ and $Q_3(x,y)$ are homogeneous cubic polynomials with a common factor.

Keywords: polynomial systems, singular points, Poincaré equator, phase portraits.

UDC: 517.925

MSC: 34С05

Received October 10, 2018, published November 23, 2018

DOI: 10.33048/semi.2018.15.120



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024