RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 1530–1552 (Mi semr1012)

Probability theory and mathematical statistics

On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities

A. S. Kartashova, A. I. Sakhanenkob

a Novosibirsk State University, 2, Lyapunov st., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, pr. Koptyuga, Novosibirsk, 630090, Russia

Abstract: Recently E. Gine, V. Koltchinskii and L. Sakhanenko (Ann. Probab., 2004) investigated necessary and sufficient conditions for weak convergence to the double exponential distribution of a normalized random variable $ \sup\nolimits_{t \in \mathbb{R}} \left | \psi(t) (f_n(t) - \mathbf{E} f_n (t)) \right | $ with some weight function $\psi(t)$, where $f_n$ is a kernel density estimator. The proof of their results consists of a large number of technically difficult stages and uses more than fifteen bulky assumptions. In this work we prove that sufficiency of convergence can be obtained under simpler and wider assumptions.

Keywords: kernel density estimators, brownian motion, function of bounded variation.

UDC: 519.21

MSC: 62G07

Received September 26, 2018, published December 3, 2018

Language: English

DOI: 10.33048/semi.2018.15.127



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024